
Semilattice Polymorphisms and Chordal

Graphs

Mahdieh Malekian

December 15, 2013

Abstract

We will review some basic properties of semilattice orders, and semi-
lattice polymorphisms, and see an algebraic characterization of chordal
graphs. In particular, we will see that a graph G is chordal if and only
if it has a semilattice polymorphism such that G is a subgraph of the
comparability graph of the semilattice.

1 Semilattices and Polymorphisms

In this section we will take a first look at definitions related to semilattices and
polymorphisms, and see some of their basic properties. Note, however, that as
we will be applying them to finite graphs, all sets and graphs are assumed to
be finite.

Definition. A partial order on a set V is called a semilattice order if for every
two elements u, v ∈ V there exists a unique greatest lower bound glb(u, v).
A binary function ∧ : V ×V → V : (u, v) 7→ u∧v is called a semilattice function
if it satisfies idempotency, associativity, and commutativity conditions.

Observe that given a semilattice order on a set V , a semilattice function on
V may be defined as u ∧ v = glb(u, v). On the other hand, given a semilattice
function ∧ a semilattice order on V can be defined as u ≤ v ⇐⇒ u ∧ v =
u. So, the two definitions given above are equivalent, and we will use them
interchangably throughout this paper. We will also use standard definitions
and notations of partial orders, total orders on a set, and also those of graphs.

Notation. For two comparable elements u, v ∈ V , equipped with a semi-
lattice order, we will use the notation u ‖ v, and for u, v noncomparable we will
use u ⊥ v.

Definition. For a given semilattice order on a set V , define the comparability
graph of ≤ to be the graph with vertex set V , where there is an edge between

1



u 6= v if u ⊥ v. Also, for u, v ∈ V we say v covers u if v ≥ u and there exists
no x with v > x > u. Now, we define the cover diagram, or the Hasse diagram
of ≤ to be the digraph with vertex set V , where there is an arc from v to u if v
covers u.

Note that the cover diagram of a partial order cannot have a directed cycle,
as it follows from existence of a directed cycle v1 → v2 → . . . → vk → v1, vi’s
distinct, that v1 > v2 > . . . > vk > v1, a contradiction. However, it is legitimate
for the underlying simple graph of a cover diagram to have a cycle, as in the
cover diagram in Figure 1:

Figure 1: An example of a cover diagram

In what follows, we will be studying semilattice orders on graphs, thus we
will find it useful for the graphs to be assumed to have a loop at each vertex,
so we make it a running assumption throughout the paper.

Another important tool when studying semilattice orders on graphs are poly-
morphisms on graphs, whose definition is given below:

Definition. A polymorphism on a graph G is a d-ary function f : V (G)d →
V (G), satisfying

ui ∼ vi, i = 1, . . . , d⇒ f(u1, . . . , ud) ∼ f(v1, . . . , vd).

An SL polymorphism on a graph G is a semilattice function on V (G) which is
also a polymorphism.

Note that a semilattice on G is an SL polymorphism iff it satisfies

a ∼ a′, b ∼ b′ ⇒ (a ∧ b) ∼ (a′ ∧ b′),

which will be referred to as polymorphism property, whose two of implications
is stated in the proposition below:

Proposition 1 [1] The polymorphism property implies

(i) (The min property) (u ≥ v ≥ w, u ∼ w)⇒ v ∼ w,

(ii) (The V-property) u ∼ v ⇒ u ∼ (u ∧ v).

Proof.

2



(i) Suppose u ≥ v ≥ w, and u ∼ w, and let a = u, a′ = w and b = b′ = v;
we have a ∼ a′, b ∼ b′, which together with the polymorphism property
implies

v = u ∧ v = a ∧ b ∼ a′ ∧ b′ = w ∧ v = w.

(ii) Suppose u ∼ v, and let a = a′ = b = u and b′ = v. Again we have a ∼ a′,
b ∼ b′, thus

u = u ∧ u = a ∧ b ∼ a′ ∧ b′ = u ∧ v.

�

Note that the converse of the above proposition does not necessarily hold,
namely the min property and the V-property do not necessarily imply the poly-
morphism property, as in the case where a ‖ a′, b ‖ b′, and a ∧ b ‖ a′ ∧ b′.
Knowing that, we start looking for a third property whose combination with
the min property and the V-property implies the polymorphism property. How-
ever, before moving in that direction it is helpful to notice that we can restrict
our attention to connected graphs:

Lemma 1 [1] A graph G admits an SL polymorphism if and only if each com-
ponent of G does.

Proof. Let G admit an SL polymorphism ∧, and G1 be a component of G. To
see that the restriction of ∧ to G1 results in a semilattice order (and thus an SL
polymorphism), let u, v ∈ G1, we show that u ∧ v also needs to be in G1. Take
a vertex w ∈ G1, and two w-paths of length k, w = x1 ∼ x2 ∼ . . . ∼ xk = u,
and w = y1 ∼ y2 ∼ . . . ∼ yk = v. (Note that G1 having loops at each node
allows us to assume the two paths have the same length.) Now applying ∧ to
these paths, we get

w = w ∧ w = x1 ∧ y1 ∼ x2 ∧ y2 ∼ . . . ∼ xk ∧ yk = u ∧ v,

so u ∧ v ∈ G1.

For the backward direction let G1, G2 be two components of G, equipped
with SL polymorphisms ≤1,≤2, respectively, m1 the minimum element of ≤1

and M2 any maximal element of ≤2, and define ≤ on G1 ∪G2 to be ≤1 on G1,
≤2 on G2, m1 ≥ M2, and take the transitive closure. Since ≤ is an extension
of ≤i on Gi, i = 1, 2, it is clear that it satisfies polymorphism property at each
Gi. So it suffices to show that when a ∼ a′ in G1 and b ∼ b′ in G2, then
a ∧ b ∼ a′ ∧ b′, which can be easily verified, as

a ∧ b = M2 ∧ b ∼M2 ∧ b′ = a′ ∧ b′.

The lemma now follows by induction on the number of components of G. �

In light of the lemma above, from now on we assume the graphs to be
connected.

3



2 Tree Semilattices

Recall that the underlying simple graph of a cover diagram can contain cycles,
as in Figure 1. However, as we will see shortly, disregarding such cover diagrams
enables us to obtain a characterization of SL polymorphisms.

Definition. A semilattice is called a tree semilattice if its cover diagram is a
tree, or, equivalently, if u ≥ v, w implies v ⊥ w. An SL polymorphism in which
the semilattice is a tree semilattice is called a tree SL polymorphism.

Lemma 2 [1] For a tree semilattice order on a set A, and a, a′, b, b′ ∈ A we
have:

(i) If a ≥ a′, b ≥ b′, and a′ ‖ b′, then a ∧ b = a′ ∧ b′.

(ii) If a ∧ b ‖ a′ ∧ b′, then a ∧ b ≥ a ∧ a′ = b ∧ b′ ≤ a′ ∧ b′.

(iii) If a ∧ b ≥ a′ ∧ b′, then either a′ ∧ b′ = a′ ∧ a = a′ ∧ b, or b′ ∧ a′ =
b′ ∧ a = b′ ∧ b.

Proof.

(i) If a ≥ a′, b ≥ b′, then a ∧ b ≥ a ∧ b′ ≥ a′ ∧ b′. To see a′ ∧ b′ ≥ a ∧ b, note
that a ≥ a′, a ∧ b, so a′ ⊥ a ∧ b. If a ∧ b ≥ a′, then b ≥ a ∧ b ≥ a′ together
with b ≥ b′ imlies a′ ⊥ b′, contradicting a′ ‖ b′, so a′ ≥ a∧ b, and similarly
b′ ≥ a ∧ b, so a′ ∧ b′ ≥ a ∧ b.

(ii) it follows from a ≥ a ∧ a′, a ∧ b that a ∧ a′ ⊥ a ∧ b. Now if it is not the
case that a ∧ b ≥ a ∧ a′, then the part of the cover diagram containing
a, a∧b, a∧a′ contains a cycle. In the same way it follows that a′∧b′ ≥ b∧b′.

(iii) Similar to the proof of part (ii).

�

Now we have the necessary tools to provide a necessary and sufficient condition
for a tree semilattice to be a tree SL polymorphism.

Proposition 2 [1] A tree semilattice on a graph G is a tree SL polymorphism
iff it satisfies the min property, the V-property, and the polymorphism property
for all edges aa′, bb′ with a ‖ a′, b ‖ b′, a ∧ a′ = b ∧ b′.

Proof. The necessity of the conditions follows immediately from Proposition 1
and the lemma above. For their sufficiency, take edges aa′, bb′ of G; we need to
show that a∧b ∼ a′∧b′. If a∧b = a′∧b′ then the conclusion is trivial. Further, if
a∧b ‖ a′∧b′, then it must be the case that a ‖ a′, b ‖ b′, as ≤ is a tree semilattice.

4



It now follows from part (ii) of the lemma above that a ∧ a′ = b ∧ b′, therefore,
by the premise of the proposition, it satisfies the polymorphism property.

So, without loss of generality, we may assume that a ∧ b > a′ ∧ b′. Now,
from part (iii) of the previous lemma we may assume that a′ ∧ b′ = a ∧ a′,
which, together with the V-property, implies that a′ ∧ b′ ∼ a. Now, given the
min property and a ≥ a ∧ b ≥ a′ ∧ b′, we have a ∧ b ∼ a′ ∧ b′, as desired. �

3 SL Polymorphisms and Chordal Graphs

In this section we will see how we can use tree SL polymorphisms to get a
characterization for chordal graphs.

Definition. A graph G is called chordal if each of its cycles of length greater
than 3 has a chord.

Note that earlier we assummed our graphs to have a loop at each node;
however, for the purposes of this section, we consider a graph to be chordal if
it is chordal after removing the loops.

It is well known, see e.g. [2], that a graph is chordal iff it has a perfect
elimination order (PEO), where a PEO is a total order on V (G) such that

(u ≤ v ≤ w), (u ∼ w), (v ∼ w)⇒ u ∼ v.

Here, we see another characterization of chordal graphs using SL polymor-
phisms.

Definition. An SL polymorphism on a graph G is called non-crossing if G is a
subgraph of the comparability graph of ≤.

Theorem 1 [1] For a graph G the following are equivalent:

(i) G is chordal.

(ii) G admits a non-crossing SL polymorphism.

(iii) G admits a non-crossing tree SL polymorphism.

Proof. Observe that the implication (iii) ⇒ (ii) is immediate. Now, we will
see (ii)⇒ (i), and (i)⇒ (iii).

(ii) ⇒ (i) Suppose G has a non-crossing SL polymorphism, and C is a
cycle in G. As C is a subgraph of the comparability graph of ≤, there
must be a maximal vertex of C, greater than both its neighbours in C,
which are adjacent by the polymorphism property . So, if C has length
> 3, then it has a chord.

5



(i)⇒ (iii) Suppose G is chordal, and take a PEO of G, ≤. We will modify
≤ to a tree semilattice ≤′ of G through the following steps:

1. Let ≤-minimum vertex be the ≤′-minimum.

2. For other vertices, say v, let the maximum neighbour below it in ≤
be covered by v in ≤′.

3. Extend ≤′ transitively.

We show that ≤′ is a non-crossing tree SL polymorphism of G. By its
construction, it is clearly a tree ordering. To see that G is non-crossing,
for a contradiction, suppose it is not, and consider all edges of G whose
two endpoints are parallel with respect to ≤′, and let u be the minimal
vertex with respect to ≤′ that is an endpoint of such an edge uv. Without
loss of generality, we may assume u ≥ v. As u does not cover v, it covers
some other neighbour u′ such that v ≤ u′, and so, as ≤ is a PEO, u′ ∼ v.
But now v ≤′ u′ contradicts v �′ u, and v ‖′ u′ contradicts minimality of
u.

Now it remains for us to show that ≤′ satisfies the polymorphism prop-
erty. Exploiting proposition 2, and noting that for non-crossing tree semi-
lattices, all the premises of the proposition, except for the min property,
trivially hold, we will verify the min property. Let u ≤′ v ≤′ w, and
u ∼ w, we need to show that u ∼ v. Since v ≤′ w, there exists a path
v = v1 ∼ v2 ∼ . . . ∼ vk = w, where vi−1 ≤′ vi, i = 2, . . . , k. We have

u ≤′ vk−1 ≤′ vk, vk ∼ vk−1, vk ∼ u,

and these relations also hold with respect to ≤, as ≤ is a linear extension
of ≤′. Since ≤ is a PEO, u ∼ vk−1. It now follows inductively that
u ∼ v1 = u, as desired.

�

References

[1] P. Hell, M. Siggers, Semilattice polymorphisms and chordal graphs, European
J. Combin. 36 (2014), 694-706.

[2] D. B. West, Introduction to graph Theory, Prentice Hall, 2 edition, (Septem-
ber 2000).

6


